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Lattice Boltzmann (LB) based Large Eddy Simulation (LES), Reynolds-averaged Navier-
Stokes (RANS) as well as hybrid RANS/LES methods within the Launch Ascent and Ve-
hicle Aerodynamics (LAVA) solver framework are applied to NASA’s wall-mounted hump.
Computational results are compared with experiments performed by Greenblatt et al.1

A detailed comparison between the accuracy and resolution requirements of the two ap-
proaches for turbulence resolving simulations, as well as the suitability of different grid
paradigms (body-fitted curvilinear and block structured Cartesian) are presented. This
test case is part of NASA’s Revolutionary Computational Aerosciences (RCA) sub-project
which addresses the technical challenge of predicting flow separation and reattachment
accurately. Improvements in predictive accuracy by as much as 90% are demonstrated us-
ing LB as well as hybrid RANS/LES approaches compared to state-of-the-art steady state
RANS simulations.

I. Introduction

The NASA Revolutionary Computational Aerosciences (RCA) sub-project has created a technical chal-
lenge to identify and down-select critical turbulence, transition, and numerical method technologies for 40%
reduction in predictive error. The test cases within the RCA technical challenge include turbulent sepa-
rated flows, evolution of free shear flows and shock-boundary layer interactions on canonical configurations.
As current turbulence models within state-of-the-art RANS solvers struggle to predict the shape and size
of separation and reattachment regions, the focus has shifted towards eddy resolving approaches. In an
effort to address some of those technical challenges, Lattice Boltzmann (LB), as well as hybrid Reynolds-
averaged Navier-Stokes/large-eddy simulation (RANS/LES) methods within the Launch Ascent and Vehicle
Aerodynamics (LAVA) solver framework are applied to the 2D NASA wall-mounted hump test case from
Greenblatt et al.1 This test case has been previously studied using both numerical approaches, the classical
Navier-Stokes (NS)2,3 as well as the emerging Lattice Boltzmann method (LBM),4 but no detailed com-
parison of the advantages and disadvantages between the two approaches regarding accuracy and resolution
requirements has been performed. This motivated the current study.

This paper is organized as follows: Sections II & III describe the test case and the underlying numerical
method used. First, the SA model implementation within the body-fitted curvilinear overset grid methodol-
ogy is assessed and the challenges RANS models face in predicting smooth body flow separation are outlined.
Second, in Section IV.B delayed detached eddy (DDES) simulation results as well as zonal detached eddy
(ZDES) results are presented and compared. The issues arising from the gray area problem5 resulting in
a delayed transition towards 3D turbulent structures in the separated shear-layer are presented. Finally
computational results obtained with the LBM-LES method are presented in Section IV.C and compared
with the hybrid RANS/LES simulations as well as results from literature3,4 and measurements.1 A fair
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comparison between the different methods considering accuracy and resolution requirements is presented in
the summary (Sec. V).

II. Test Case - NASA Wall-Mounted Hump

The test case1 studied in this paper is based on the experimental database of the ERCOFTAC a framework
and describes a low-speed flow separation over a wall-mounted hump geometry. The setup of the Glauert-
Goldschmied type body can be seen in Fig. 1 and is similar to the setup of Seifert et al.6 It is mounted on
a splitter plate at the wind tunnel floor between two side plates 0.584m apart from each other and has a
chord length of c = 0.42m.

Figure 1: Experimental setup of NASA wall-mounted hump by Greenblatt et al1

The side-plates shown in the experiments are neglected in the simulations and periodic boundary condi-
tions are applied in the spanwise direction with a width of 0.2c. Simulations with the same lateral extent have
been previously carried out by You et al.7 and Uzun and Malik3 and good agreement with skin friction and
pressure coefficient distrubution has been achieved. As recommended by the NASA CFDVAL2004 workshop
a contoured top wall was used in the simulation to account for the side-wall blockage effects and is located
at y/c≈0.9c. A study on the effect of this top wall contour can be found in Uzun and Malik8 who also point
out limitations of this simplified approach. The reported Reynolds number based on freestream velocity and
chord length is Rec = 9.36 × 105 with a Mach number of Ma∞ = 0.1 and a momentum thickness Reynolds
number of ReΘ = 7200. It should be noted that experiments and extensive skin friction measurements for
the same configuration and flow condition have been performed by Naughton et al., however a slightly lower
momentum thickness Reynolds number value of 6800 has been reported. The small slot at the leeward side
of the hump located at x = 0.65c, which was implemented for flow control purposes, is not modeled as its
effect was negligible for the mean statistics obtained in both experiments and previous simulations.

III. Computational Methodology

The LAVA solver framework9 is utilized for the computational study. LAVA offers flexible meshing
options and was developed with the intent of modeling highly complex geometry and flow-fields. The
framework supports Cartesian and curvilinear structured grids as well as unstructured arbitrary polyhedral
meshes. Overset grid technology10 is used to couple the solutions across different overlapping meshes. In
this study, the Cartesian grid approach is used with the LBM-LES method and the structured curvilinear
overlapping grid methodology is used for the RANS and hybrid RANS/LES method. The Cartesian grids
are automatically generated within the LAVA framework and the PointwiseTM and Chimera Grid Tools
(CGT)11 software packages are used to generate the curvilinear grids.

aERCOFTAC: European Research Community On Flow, Turbulence And Combustion
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III.A. Curvilinear Navier-Stokes Solver

The compressible hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) equations
are solved using a finite-difference formulation applied to the curvilinear transformed system of equations in
strong conservation law form.12 The Spalart-Allmaras (SA)13 turbulence model is used as the base RANS
closure model. Two hybrid RANS/LES modeling approaches are assessed in this paper, including a zonal and
a non-zonal formulation. Implicit second-order backward differencing (BDF2) is used for time integration
and the discretized equations are marched in pseudo-time until a sufficient reduction in the residual has
been achieved for each physical time-step (approximately 3 to 4 orders of magnitude of residual reduction is
achieved in the present computations). The nonlinear system of equations are linearized at each pseudo time-
step and an alternating line-Jacobi relaxation procedure is applied. A local pseudo time-step corresponding
to a Courant-Friedrichs-Lewy (CFL) of 10 is used to accelerate convergence. Domain decomposition and the
Message Passing Interface (MPI) are used to enable a scalable parallel algorithm.

III.A.1. Low Dissipation Finite-Difference Method

High-order accurate low dissipation finite-difference schemes have been shown to be an effective strategy for
turbulence resolving simulations using LAVA.14–17 A thorough study comparing several high-order finite-
difference methods on Cartesian grids within the LAVA framework was reported previously.18 Results from
this study indicated that high-order Weighted Essentially Non-Oscillatory (WENO) schemes19 performed
well in both resolution (Points-Per-Wavelength PPW), shock capturing, and robustness under harsh flow
conditions. A natural extension of finite-difference WENO schemes to curvilinear grids are the high-order
Weighted Compact Nonlinear Schemes (WCNS).20 The WCNS method, applied to the convective fluxes,
consists of WENO interpolation (as opposed to reconstruction) of the left and right states to the half grid
points, followed by evaluation of the numerical flux at the half points by an approximate (or exact) Riemann
solver or flux vector splitting scheme, and concluding with a high-order central finite-difference operator at
the grid points which depends on the numerical fluxes at the half points in either an implicit (i.e. compact)
or explicit form. When applying finite-difference methods to the curvilinear equations in strong conservation
law form, standard WENO finite-difference methods will not satisfy the Geometric Conservation Law (GCL)
making it necessary to combine the WENO interpolation with high-order central-difference operators. It has
been shown that free-stream preservation (i.e. the GCL condition) is satisfied up to machine precision
provided that identical central difference operators are used for discretizing the metric terms as well as the
fluxes.21,22 An additional advantage of WCNS over WENO is the ability to use approximate Riemann solvers.
Standard finite-difference WENO methods require the use of flux vector splitting methods for numerical flux
evaluation. In this work, a modified version of the Roe numerical flux is used.23–25

A consequence of using high-order central difference operators applied to numerical fluxes at the half
grid points, which depend on high-order WENO interpolation, is the much wider stencil required for the
same order of accuracy compared to the standard finite-difference WENO method. To reduce this pathology,
high-order central difference operators using a combination of the numerical fluxes at the half grid points and
the physical fluxes at the grid points have been developed.26,27 This approach, denoted Hybrid Weighted
Compact Nonlinear Scheme (HWCNS), allows for up to third/fourth-order accuracy using a five-point stencil
by combining blended third- and fourth-order interpolation with a fourth-order hybrid central difference
operator. In the current approach, the convective fluxes (and the metric-terms used within) are discretized
with the high-order HWCNS, while the viscous fluxes (and their metric terms) are discretized with standard
second-order accurate central differencing. A more detailed description is included in Housman et al.16

III.A.2. Non-Zonal Hybrid RANS/LES model

The Detached Eddy Simulation5,28 (DES) and Delayed Detached Eddy Simulation29–31 (DDES) turbulence
model closures are well-tested hybrid RANS/LES models for highly separated flows. In the original DES
model, the transition between RANS and LES models was based strictly on local mesh size relative to the
wall-distance. For geometries with a wide range of geometric length scales, such as a high-lift devices with
finite-thickness leading and trailing edges or nozzles with finite thickness exits, the local mesh spacing may
become small enough to force transition from the RANS model to the LES model, but the mesh is typically
not small enough to resolve the unsteady fluctuations causing the well-known modeled stress depletion.32

This resulted in a modification denoted as DDES, which attempts to remain in RANS mode in the attached
boundary layer.29 Inspection of the shielding function often shows a strange behavior of going from RANS
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near the wall, to LES, back to RANS just past the edge of the boundary layer, and subsequently back to
LES.33

One critique of hybrid RANS/LES models is the slow development of three-dimensional turbulent struc-
tures even when the spatial and temporal resolution are adequate to capture them. This is often caused by
the definition of the local length scale in the model, which for the DDES model is the largest edge length
associated with the cell (or dual cell) of a grid point. An alternative length scale definition developed using
the Zonal Detached Eddy Simulation (ZDES) approach34,35 utilizes a normalized vorticity vector together
with combinations of two-dimensional length scale estimates. The normalized vorticity vector allows the
span-wise or azimuthal direction to be identified in the initial onset of two-dimensional instabilities, and
removes the grid length spacing in that direction (which may be large compared to the streamwise and shear
directions) from the local length scale estimate. This reduction is effectively ignored once three-dimensional
turbulent structures are formed. At this point the normalized vorticity vector will not be aligned with any
particular mesh direction and the standard length scale is recovered. Utilization of the normalized vorticity
vector along with a more conservative estimate of the mesh spacing has been developed36 and is used in the
present work. A detailed description of the length scale definition is included in Housman et al.16

III.A.3. Zonal Hybrid RANS/LES model

An alternative strategy appropriate for structured multi-block and overset grids is the Zonal DES (ZDES)
approach first introduced by Deck35,37,38 in which specific zones are designated to use the RANS, DDES, or
LES models explicitly. This idea of zonal specification has been further generalized to include a user-specified
wall distance based transition location between RANS and LES.39,40 This allows the user to choose, based
on a strong understanding of the physics of the problem, which regions should be solved in pure RANS and
hybrid RANS/LES mode. When in hybrid RANS/LES mode it also gives additional control to the user to
prescribe the transition location to explicitly guarantee that the attached boundary layer remains in RANS
mode. This is very important since shielding functions, such as those used in the DDES model, can still fail
when the mesh is fine enough to capture some three-dimensional fluctuations, but not fine enough to resolve
the relevant scales in the boundary layer to accurately predict skin friction.

A recent extension to ZDES, introduced by Deck et al.35,41,42 and improved by Renard et al.,43 in which
the model acts in a wall-modeled LES (WMLES) mode has also been added to LAVA. Here RANS is used
in the inner layer of the attached boundary layer up to a user selected wall distance (typically 10% of local
BL thickness43), and interfaces to an outer LES (no forcing or filtering is applied). This is a simple and
robust approach which avoids spurious artifacts at the interface, however it can lead to a log-layer mismatch
caused by the inconsistency in the equation set across the interface (i.e. Reynolds averaged Navier-Stokes
on one side of the interface and filtered Navier-Stokes on the other side).

Figure 2: Classification of canonical flow problems by mode following Deck et al.:35 (1) separation fixed by
geometry, (2) separation induced by pressure gradient on curved surface, (3) separation strongly dependent
on dynamics of incoming boundary layer.

The ZDES approach used in this paper is based on the Spalart-Allmaras (SA) turbulence model, where the
pseudo viscosity ν̃t from the model scales with the distance to the wall dw and the local vorticity magnitude
Ω in the inner layer. In the outer LES region the SA model acts as a subgrid-scale model (SGS) with a
modified length scale for dw. For this reason Deck introduced three different hybrid length scale formulations
replacing dw with dZDES which were optimized for canonical flow configurations (see Figure 2). Only Mode
3, which is calibrated for flows where the separation is strongly influenced by the dynamics of the incoming
boundary layer, will be considered in this study. The user must select which zones to solve in pure RANS
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mode and which zones to apply ZDES Modes 1, 2, or 3. For zones which use ZDES Mode 3, the user must
also prescribe an interface distance from the wall hw at which to transition from RANS to LES. A detailed
discussion about the interface location can be found in Section IV.B.1. The user must also suppy turbulent
fluctuations at the inflow (Sec. III.C). The hybrid length scale for Mode 3 is defined in the following way:

dZDES =

dw, if dw < hw

min (dw, CDES · ∆) , otherwise
(1)

with the constant CDES = 0.65 and the subgrid length scale ∆ = (∆x∆y∆z)1/3.

III.B. Cartesian Lattice Boltzmann Solver

Over the past two decades, the Lattice Boltzmann Method has matured into a burgeoning technique for
simulating engineering fluid flows of practical importance. The LB method is a mesoscopic approach wherein
simplified kinetic equations that retain just enough detail to satisfy the desired macroscopic equations of
fluid motion (weakly compressible, isothermal Navier-Stokes equations in the present context) are solved.44

The local state of fluid motion is described by density distribution functions f(~x, t, v), which upon being
normalized by the local density represent the probability of finding particles moving with velocity v in an
infinitesimal volume dx about ~x. The familiar macroscopic variables such as density and the components of
momentum are determined from the density distribution functions through moment summations. Details of
the implementation of the LB method and recent improvements within the LAVA framework can be found
in Barad et al.45,46

III.B.1. Governing Equations

The LB equation governs the space-time evolution of density distribution functions f(~x, t, v). The density
distribution function f(~x, t, v) at a particular node of the lattice defines the fraction of mass contained
in a control volume surrounding the node which moves at velocity v. For example, f(~x, t, 0) defines the
fraction of mass contained in the control volume which is at rest. The equation is solved numerically
through an extremely efficient collide at nodes and stream along links algorithm. In a single time step, the
virtual computational particles collide at a node relaxing towards the local equilibrium and subsequently
hop on to the neighboring nodes of the lattice. The velocity space is commonly discretized into 15, 19 or 27
velocities on a regular cubic lattice in 3D, where the notation DdQq describes a lattice in d dimensions with q
discrete velocities. The local equilibrium is a truncated, low-speed approximation of the Maxwell-Boltzmann
distribution function corresponding to the local macroscopic variables.

The collision operation is perfectly local in space and time. Every node performs this operation inde-
pendent of every other node in the lattice. It is perfectly non-local in the velocity space within a given cell
in the physical space, i.e. all particles interact with each other during the collision process. The velocity
space is discrete. The particles are only allowed to have a certain number of discrete velocities consistent
with discrete node-to-node streaming operations on the lattice. The particles are bound to the lattice, and
are not allowed to occupy positions in between the nodes of the lattice. They simply hop from one node
to another on the lattice as time advances. This makes exact, dissipation-free advection (i.e. streaming) a
simple nearest-neighbor ‘copy’ operation.

The fluid viscosity sets the rate at which the density distribution functions relax to the local equilib-
rium. More viscosity implies faster relaxation to the local equilibrium and lower deviations from the local
equilibrium on average. The relaxation rate is also inversely related to the local lattice spacing. A coarser
mesh results in larger deviations from the local equilibrium for a given viscosity. For small Mach numbers,
the Chapman-Enskog expansion can be used to show that the simplified collision rules with truncated equi-
librium distribution functions reproduce the weakly-compressible, isothermal Navier-Stokes equations in the
low-frequency/large-wavelength limit.47

III.B.2. Collision Models

The following collision models are currently available in the solver:
1. Bhatnagar-Gross-Krook (BGK) model - All distribution functions relax to their local equilibrium

values at the same constant rate for every node in a given grid refinement level.48 All moments of the
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distribution function (from order two to six) relax to their equilibrium values at a single rate that is only a
function of the fluid viscosity and the local lattice spacing.

2. Bhatnagar-Gross-Krook model with realizabilityb constraint - The rate at which the distribution
functions relax to their local equilibrium is modified locally at every node of the lattice to enforce strict
realizability of the distribution functions everywhere.49 Strict enforcement of realizability through local
under-relaxation (if and where necessary) is tantamount to surgical addition of artificial viscosity in regions
where the simulated flow is too under-resolved to maintain numerical stability. This approach guarantees
nonlinear stability and makes engineering Reynolds numbers accessible at a manageable computational cost.

3. Entropic model - The rate at which the distribution functions relax to their local equilibrium is
modified locally to enforce compliance with the H-theorem.50 The local relaxation rate is modified to ensure
that the Boltzmann-Shannon entropy of the post collision state is not lower than the pre-collision state.50

Since the Boltzmann-Shannon entropy is a Lyapunov function in the phase space corresponding to the
density distribution functions, compliance with H-theorem guarantees nonlinear stability. Compliance with
H-theorem also guarantees realizability by construction.

4. Multiple-Relaxation Time (MRT) model - The collision operation is performed in the moment space.
Conceptually, the pre-collision density distribution functions are transformed into the moment space through
a linear transformation and post-collision moments transformed back into the velocity space. The higher-
order moments (the so-called ghost modes) are relaxed to equilibrium at a faster rate relative to the hydro-
dynamic modes.51

5. Entropic Multiple-Relaxation Time (EMRT) model - Instead of choosing the relaxation rates for the
higher-order moments in an ad hoc manner for the entire lattice, they are chosen locally on a node-to-node
basis based on the entropic principle.52 All the LB simulations presented in this paper were performed using
the entropic multi-relaxation time model on the D3Q27 lattice.

6. Regularized Bhatnagar-Gross-Krook model - The pre-collision state is regularized by equilibrating
the higher-order moments using Grad’s approximation.53 The post-collision state is obtained from the
regularized pre-collision state using the standard Bhatnagar-Gross-Krook (BGK) rule.

The unresolved, subgrid scales of turbulence are modeled using the constant-coefficient Smagorinsky
model,54 which modifies the local rate at which the distribution functions relax to equilibrium.

III.B.3. Boundary Conditions

The LBM formulation accounts for the presence of an embedded geometry through simple, intuitive rules
which express the unknown, incoming populations in terms of the known, outgoing populations in order to
complete the streaming step for lattice links intercepted by the geometry. For example, simply bouncing the
particles back from the geometry in the opposite direction enforces the no-slip boundary condition. Specular
reflection of particles in the mirror image direction is realized as the free-slip/no-penetration boundary
condition. Both of these standard bounce-back (SBB) rules approximate the actual curved geometry with a
series of small steps whose sizes are proportional to the local grid spacing.

Interpolated bounce-back rules capture the curvature in geometry more accurately, albeit at the cost
of forfeiting strict realizability and precise mass conservation. Our experiments indicate that the linear
bounce-back (LBB) formulation proposed by Bouzidi et al.55 is accurate, sufficiently robust, and extremely
efficient computationally. The LBB computational time penalty relative to the SBB rule is minimal for the
Structure-of-Arrays (SoA) data structure we have employed in our solver, where the boundary condition
routine can take advantage of excellent cache reuse.

A numerical sponge, where the relaxation time is ramped up, was used in a buffer zone close to far-field
boundary to minimize spurious reflections. The treatment of complex geometries within the Cartesian solver
framework is described in Barad et al.45

III.B.4. Wall-modelling

One of the major issues faced by LES simulations is handling high Reynolds numbers in wall bounded
flows. This is exacerbated in Cartesian solvers with isotropic cells. In an attempt to alleviate those harsh
requirements, models have been developed that mimic near-wall physics close to the wall. An overview of
recent development and future directions on wall-modeled LES can be found in Larsson et al.56 and Bose

bA realizable post-collision state is one in which all relevant probability density functions take values between zero and one.
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and Park.57 The wall-model implemented in our framework solves Turbulent Boundary Layer equations
within the first cell and replaces the Lattice Boltzmann density distribution functions near the wall.

The main difference between wall-models for Navier-Stokes LES and LBM-LES is that LBM unknowns
near the wall are density distribution functions and not velocities. More details of the implemented wall-
model can be found in Malaspinas et al .58 We have extended the model to handle curved geometry. Details
of this modification will be reported in a separate publication, along with an extensive verification and vali-
dation study.

III.B.5. Multi-Resolution Cartesian Methods

The Cartesian structured adaptive mesh refinement (SAMR) methodology is capable of automatically gen-
erating, refining, and coarsening nested Cartesian volumes given a closed surface triangulation, and hence,
offers the ability to dynamically track important flow features as they develop. Figure 3a shows an idealized
SAMR hierarchy refining about a feature. In adaptive methods, one adjusts the computational effort locally
to target a uniform level of accuracy throughout the problem domain. Cartesian SAMR is a proven method-
ology for multi-scale problems, with an extensive existing mathematical and software knowledge base.59–64

The LAVA code incorporates data structures and inter-level SAMR operators from the high-performance
Chombo library.65 SAMR allows the simulation of a wide range of spatial and temporal scales through local
refinement.

The advancement of time with a locally refined Cartesian mesh hierarchy is typically either composite
or sub-cycled. For the composite approach, a constraint is imposed that all SAMR levels are advanced with
the same time step, i.e. ∆t = constant. The composite approach is not possible for the LB formulations
considered here. The sub-cycling of levels is performed, as described in,61,66 where each level is advanced in
such a way as to maintain a constant CFL, i.e. ∆t = C∆x.

Figure 3b illustrates the flow of information during the subcycling algorithm for a mesh with 3 levels.
The right pointing red arrows indicate space-time interpolation from a coarse level to a fine level, filling
ghost cells. The left arrows indicate an averaging down procedure from fine to coarse levels. The blue
up arrows indicate a single level advancement (streaming step) in time. The coarse-fine algorithm ensures
discrete conservation of mass and momentum to machine precision.67,68 Figure 3a shows the algorithm for
the left-to-right component of the density distribution function depicting streaming (blue), communication
exchange from components streaming into a finer level (red) and from fine-to-coarse for outgoing density
distribution functions (green). More information on this recursive algorithm can be found in Chen et al.67

and Rohde et al.68

(a) (b)

Figure 3: (a) Block structured adaptive mesh refinement showing 3 levels refined by factors of 2. Subcycle
procedure demonstrated on left-to-right component of density distribution function: streaming (blue), coarse-
to-fine communicaton (red), fine-to-coarse communication (green). (b) Recursive sub-cycling algorithm for
a 3 level hierarchy of grids. Arrows indicate direction of information propagation.
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III.C. Turbulent Inflow Generation - Synthetic Eddy Method

The synthetic eddy method (SEM) of Jarrin et.al69,70 is used to generate turbulent structures in the upstream
boundary layer. This approach introduces synthetic eddies at the interface, such that first and second
order turbulent statistics are matched with the upstream RANS solution. The eddies are convected at a
characteristic velocity in order to mimic the temporal and spatial correlations of actual three-dimensional
turbulence. Specification of the eddies and their downstream evolution are illustrated for a turbulent channel
flow in Figure 4a. Once the governing equations are integrated forward in time for a sufficiently long duration,
the turbulent statistics can be computed. Figure 4b-d show the time-averaged stream-wise velocity, the
RMS stream-wise velocity, and the resolved turbulent kinetic energy. Although the interface will converge
to the correct first and second order statistics, there is a delay before physical three-dimensional turbulence
is recovered within the flow field. This can be observed in the RMS of the stream-wise velocity. Some
modifications of the formulation have been made regarding the size of the eddies.71 Whenever used, the
SEM interface is placed 3.0 chords upstream of the hump, which corresponds to more than 30 boundary
layer thickness. The correlation length scales used in this implementation are computed (see Eqn. 2) using
Bradshaws hypothesis to compute the turbulent kinetic energy.

σSEM = max

(
min

(
2dw, 3

k2.5

ε

)
, 1.5∆

)
(2)

Where ∆ = max(∆x,∆y,∆z), dw the wall distance and ε = 0.09k2/νt the rate of dissipation. The

turbulent kinetic energy k is computed with k = νt|S|
cµ

.

IV. Computational Results

Steady-state RANS as well as high-fidelity time-accurate simulations utilizing LBM-LES and NS-LES
methods were performed using the LAVA solver framework. Multiple grid paradigms, namely structured
curvilinear overset and immersed boundary Cartesian methods, were utilized and the success and challenges
inherent to each method will be discussed and presented in this section. First, verification of the SA model
implementation within the body-fitted curvilinear overset grid methodology is assessed by comparing to
results posted on NASA’s Turbulence Modeling Resource (TMR) website72 (Sec. IV.A). This configuration
has proven to be a challenging test case for most RANS solvers in accurately predicting the bubble size
and reattachment location. In Section IV.B two different approaches to hybrid RANS/LES (DDES and
ZDES Mode 3) are compared. ZDES Mode 3 can also be considered a wall-modeled LES approach with
RANS serving as the wall-model. In addition, the ability of the SEM method to force a more rapid transition
towards three-dimensional structures in the shear layer that originates from the smooth body flow separation
is investigated. The sensitivity of the results to the interface location as well as the time step in the ZDES
Mode 3 simulations are presented in Sec. IV.B.1 and IV.B.2 respectively. Finally in Sec. IV.C the Lattice-
Boltzmann method in LES mode is applied and results are compared with the ZDES results and with existing
wall-resolved38 and wall-modeled73 simulations from the literature. We conclude with a unbiased comparison
between ZDES Mode 3 and LBM-LES.

IV.A. Validation and Challenges of Reynolds-Averaged Navier-Stokes Simulations

In this section results from 2D RANS simulations on three different curvilinear meshes are presented and the
challenges this method faces are highlighted. The three finest grids from the TMR74 website without plenum
have been used for this study. Previous works have shown that it is very important to resolve the shear layer
as well as the separation and re-attachment location adequately to predict the size of the separation bubble.
Hence clustering downstream of the separation point, the re-attachment point and in the favorable pressure
gradient region upstream of the hump is applied. Figure 5 shows a succession of the three grids used. The
corresponding grid sizes for the entire domain are coarse (205x55), medium (409x109) and fine (817x217).
In order to run LAVA on these grids, the 2D slices where copied to three planes in order to create a 3D grid.

The steady-state RANS calculations are performed using a 2nd order modified Roe scheme without
limiting or preconditioning. The Spallart-Allmaras (SA)13 turbulence model without the so called ”ft2”
term was utilized in this work. The SA working variable ν̃t is set to 3ν∞ as recommended for the SA-noft2
turbulence model.72 The simulations were run with a constant CFL number until the L2 norm of the flow
residual on each zone was reduced by at least five orders of magnitude from its initial value.
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(a) Instantaneous span-wise velocity

(b) Time-averaged stream-wise velocity

(c) RMS stream-wise velocity

Figure 4: (a) Isometric view of the instantaneous span-wise velocity illustrating the synthetic eddies inserted
into the channel flow at the first plane, and their evolution downstream. (b) Time-averaged stream-wise
velocity showing a small perturbation in the boundary layer where the synthetic eddies are inserted and the
recovery of the boundary layer downstream. (c) RMS stream-wise velocity showing the development of the
resolved turbulent content downstream of the SEM interface.
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Figure 5: Coarse (205x55) , medium (409x109) and fine (817x217) RANS mesh from TMR.74

As this case is part of the NASA RCA Technical Challenge, defined in NASA’s CFD Vision 2030 Study,75

specific validation metrics have been defined. Those are the location of separation and reattachment, the
turbulent shear stress and velocity profiles as well as skin friction and surface pressure coefficients. Of interest
is also the deviation of the separation bubble size (Eqn. 3) and the variance in the peak turbulent shear
stress magnitude (Eqn. 4).

δbubble =
[(

(x/c)rea − (x/c)sep

)
− 0.435

]
/0.435 (3)

δu′v′ = −
[(
u′v′/U2

ref

)
min@x/c=0.8

+ 0.020
]
/0.020 (4)

RANS models have shown difficulties in predicting the size of the separation bubble as they tend to
underpredict the turbulent shear stress in the separated shear layer, thus leading to a delayed reattachment.
The separation bubble size in RANS is typically overpredicted by 35% to 38% depending on the turbulence
model. More recently efforts have been made to improve the predictive capabilities of RANS solvers for
smooth body separated flows by Rumsey et al.76,77 and Lardenau78 and overall good improvements have
been achieved. However the reattachment location prediction remains unsatisfactory.
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Figure 6: Comparison between RANS and Experiment for: (a) normalized velocity profile at x/c=1.3; (b)
normalized shear stress at x/c=0.8

Figure 8a shows the axial velocity profiles at given x/c locations and compares them with RANS results
from CFL3D and experimental results from Greenblatt et al.1 An overall good agreement between the two
different solvers and the three different mesh levels can be observed. The medium and fine mesh results are
almost indistinguishable and consistent with CFL3D results. Table 1 shows the separation, reattachment
locations as well as the bubble size for all discussed 2D simulations. The reattachment location is consistent
between the two RANS solvers at around 1.26c and leads to a overprediction of the bubble size by approx-
imately 38%. This is in agreement with values reported in the literature for this configuration. Figure 6a
shows a closeup of the normalized streamwise velocity at x/c=1.3 and demonstrates the overprediction of
the bubble size with much smaller velocity values close to the wall.
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Figure 8b and Figure 6b show the normalized shear stress. A key issue that RANS solvers face for this
flow configuration is the underprediction of the turbulent peak shear stress magnitude in the separated region
resulting in insufficient turbulent mixing and thus a delayed reattachment. Utilizing the metrics defined in
Eqn. 4 an underprediction of around 45% can be observed. The errors from all simulations are listed in
Table 1.

Skin friction coefficient and pressure coefficient variations along the streamwise direction are shown in
Figure 7 and compared with CFL3D and measurements. All grid levels compare reasonably well with
experimental measurements in the upstream portion of the hump until separation occurs, a clear deficiency
in predicting the reattachment location can be seen in the Cf plot. As suggested in the TMR website,
the pressure coefficient curve has been shifted by ∆Cp = −0.015 in order to better match the experiments
upstream. Overall the pressure coefficient is slightly underpredicted but matches the experiments reasonably
well except inside of the recirculation region.
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Figure 7: Comparison of skin friction coefficient Cf (a) and pressure coefficient Cp (b) with CFL3D and
experiments.

In summary our RANS simulations agree very well with results reported in literature. The inability of
RANS turbulence models to predict the separation bubble size accurately has been demonstrated. Clearly
eddy resolving approaches are necessary to obtain improved results.

Table 1: Separation and reattachment locations and corresponding separation bubble size from 2D LAVA
RANS simulations, CFL3D RANS simulations and 2D PIV centerline measurements of Greenblatt et al.1

Separation bubble error computed using Eqn. 3.

Case Separation location Reattachment location Bubble length Error

(x/c) (x/c) (∆x/c) (%)

Greenblatt et al. 0.665±0.005 1.10±0.005 0.435 -

CFL3D TMR 0.661 1.263 0.602 38.3

coarse 0.662 1.260 0.598 37.4

medium 0.661 1.263 0.602 38.3

fine 0.661 1.263 0.602 38.3

IV.B. Hybrid RANS/LES - Structured Overset Grid System

In the following section, results from our time-accurate structured curvilinear overset grid solver will be
presented. Two different approaches have been chosen for this work and are described in Section III.A.1 for
hybrid RANS/LES and in Section III.A.2 for WMLES (ZDES Mode 3).

The advantage of structured overset grids for wall bounded flows includes the ability to generate highly
anisotropic grids to capture boundary layers and shear layers. Local refinement is used in the streamwise
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Figure 8: Comparison of (a) axial velocity profiles and (b) Reynolds shear stress with CFL3D and experi-
mental results from Greenblat et al. taken from TMR.74
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direction to capture the separation and reattachment locations more accurately. Tight-clustering is also
used near the viscous walls to guarantee a wall normal resolution in viscous wall units of approximately one.
The latter is a tremendous advantage when it comes to simulating wall-bounded flows compared to using
Cartesian methods with isotropic cells. This will be discussed in more detail in section IV.C.

A time-step of ∆t = 1.8 × 10−5 seconds is used for the simulation along with 10 sub-iterations which
equated to 3-4 orders of magnitude residual reduction at each physical time-step of the dual-time stepping
algorithm. This time-step is equivalent to a ∆t+ = 5.0 and a

∆tUref
δ0

= 0.02. If an explicit time-marching
scheme is used with the current mesh and a CFL restriction of unity is enforced, then the time-step would
need to be reduced by three orders of magnitude compared to the current simulation because of the viscous
wall spacing. To begin the simulations, steady RANS is performed until a converged solution is obtained.
Next, the hybrid RANS/LES models are activated in selected regions and run for 10-15 convective time
units in order to wash out transients. Finally, the simulation is restarted and turbulent statistics were
collected over one or two full domain flow through times (FDFT), which corresponds to approximately 8 to
16 convective time units.

Figure 9: Mesh for unsteady curvilinear simulations. (top) blue zones are in pure RANS mode, red zones in
hybrid RANS/LES or WMLES mode. Total number of grid points is 11.3 million. SEM seeding location at
x/c=-3.0 (start of red zone). Measured δ0 at SEM seeding location.

The mesh was created following the suggestions of Deck35 for ZDES as well as our observations from
the preliminary RANS study. Figure 9 shows a picture of the final mesh used in this work. The spanwise
extent of the domain is 0.2 chord lengths. Previous studies by You et al.7 and Park79 have shown good
agreement with a similar spanwise extent. The regions highlighted in blue mark zones in which pure RANS
is used in order to provide upstream profiles, Reynolds stresses and to dampen reflections from the inlet and
outlet in ZDES Mode 3. In order to insert meaningful turbulence at the interface between RANS and LES
at x/c=-3.0 a modified version of Jarrin’s69,70 Synthetic Eddy Method has been utilized (see Section III.C)
for all ZDES runs and for DDES runs whenever mentioned.

Figure 10 shows the skin friction coefficient and pressure coefficient for RANS, DDES, DDES+SEM and
ZDES Mode 3. In the DDES+SEM and ZDES Mode 3, synthetic turbulence was seeded at x/c = −3.0
using flow quantities from upstream RANS as an input. Upstream of the separation point the SA-DDES
results are consistent with the SA-RANS results, indicating the attached boundary layer is staying in RANS
mode as expected. The slight deviation between RANS and the hybrid models stems from small differences
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Figure 10: Comparison of skin friction coefficient Cf (left) and pressure coefficient Cp (right) between RANS,
DDES, DDES+SEM and ZDES Mode 3. The SEM seeding location is at x/c = −3.0.

in the mesh. The DDES models recovered the RANS results up to the separation location. Downstream of
the separation point the flow quickly reattaches near the wall creating a bifurcated separated flow pattern
(see Figure 11) that is qualitatively different from what is observed in both the experiment and RANS
simulations. The separated flow region is very well-predicted using SA-ZDES Mode 3 with almost no visible
differences between the experiment and the computation.

The difficulties DDES models face for predicting shallow flow separation are associated with the gray
area problem, which causes a delay in the development of three-dimensional structures in the shear layer.
Similar problems have been observed by Garbaduk80,81 for SST-DDES and Probst et al.81 SA-DDES, where
the latter seems to suffer even more for this configuration. As seen in Figure 14 and Figure 15 depicting
snapshots of vorticity magnitude and turbulent eddy viscosity, SA-DDES suffers from a strong delay in the
development of 3D structures in the separated shear layer, even though it appears to transition to LES mode
almost immediately downstream of the separation location (as indicated by the fd function in Figure 15
(left)). This behavior persists for SA-DDES even when using the improved length scale.16,36 A similar
behavior for DDES was recently reported for axial round jets by the authors.82 Seeding turbulent structures
using SEM improves the transition to a certain degree, as turbulent structures upstream of the separation
point are resolved and not modeled in the outer edge of the boundary layer.

This outer shear layer separation overprediction, as well as the inner layer reattachment, is also reflected
in the velocity profiles in Figure 12. The inner-layer reattachment occurs between x/c = 0.68 and x/c = 0.89
for the DDES models. Errors due to the 2D structures in the shear layer are prominent for all profiles shown
and improvements from the turbulent structures created by the SEM can also be seen. Another interesting
observation is that adding SEM structures changes the skin friction upstream of the separation. Similar
behavior is observed when using SEM in a Zero pressure gradient flat plate simulation, where the skin friction
drops and a certain development length is necessary in order to recover from this (see Jarrin et al.69,70).

The turbulent eddy viscosity from the ZDES Mode 3 at hw = 0.1δ0 decays much quicker compared to the
DDES runs and only maintains an eddy viscosity ratio of around 5 to 8 in the shear layer. This difference
becomes even more prominent when looking at an iso-contour of the Q-criterion c colored by the streamwise-
velocity illustrated in Figure 13. Highly correlated structures in spanwise direction can be observed for
the DDES model whereas the ZDES Mode 3 model has realistic 3D turbulent structures upstream of the
separation point, as expected.

IV.B.1. ZDES Mode 3 - influence of interface location

In this section we will study the effects of the interface location hw between RANS (which serves as a wall-
model in ZDES Mode 3) and the outer LES simulation. According to Deck42 and Renard and Deck43 it is

cQ-criterion: second invariant of the velocity-gradient tensor. Q = 1
2

(ΩijΩij − SijSij) where Ωij is the vorticity tensor and
Sij is the strain-rate tensor.

14 of 31

American Institute of Aeronautics and Astronautics



Figure 11: Contour plot of averaged streamwise velocity component from DDES simulation. Streamtraces
show bifurcated flow pattern within the recirculation bubble shortly after the separation.
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Figure 12: Normalized axial velocity profiles at given x/c locations for DDES and DDES+SEM. Inner layer
reattachment between x/c=0.68 and x/c=0.89. Outer-layer overprediction due to large 2D structures in
shear layer. Profiles succesively shifted by ∆U/Uref = 1.5

Figure 13: Iso-contour of Q-criterion colored by normalized streamwise velocity: (left) DDES, (right) ZDES
Mode 3. Strong correlation in streamwise direction for DDES past the separation location.
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(a) DDES

(b) DDES + SEM

(c) ZDES ”Mode 3” with interface at 0.1δ0

Figure 14: Snapshot of the normalized vorticity magnitude in the xy-plane.
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(a) DDES

(b) DDES + SEM

(c) ZDES ”Mode 3” interface hw = 0.1δ0

(d) ZDES ”Mode 3” interfce hw = 0.3δ0

Figure 15: Comparison of four different hybrid RANS/LES simulations: (left) shielding function fd; (right)
turbulent eddy viscosity ratio µt/µl
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recommended to constrain the interface location between inner layer RANS and outer layer LES in boundary
layer thickness units. They observed that this choice led to a better skin friction prediction, for a given grid
resolution.
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Figure 16: Inflow profile with ZDES for different interface locations: (blue line) hw = 0.1δ0 and (red line)
hw = 0.3δ0.

Before investigating the influence of the interface location on the integrated quantities Cf and Cp we
assess if both interface locations reproduce the experimental inflow profile at x/c = −2.14. It should be noted
that the interface location used in our simulation is at a fixed height throughout the whole domain. Two
different interface locations are considered, one at hw = 0.1δ0 and the second at hw = 0.3δ0, where δ0 is the
boundary layer thickness at the inflow plane. Figure 16 shows the time-averaged normalized velocity profile
at this location. Both simulations reproduce the velocity profile with good agreement. A clear log-layer
mismatch can be seen for both interface locations.

Skin friction and pressure coefficient distributions for the two different interface locations are depicted
in Figure 17. As we used a constant wall distance for the interface location in our simulations, the actual
value of hw/δ can locally be larger or smaller than 0.1 or 0.3. This is indeed the case in the region between
−0.5 < x/c < 0.1 where the boundary layer is thicker. In this region the larger interface location leads
to a better agreement. Opposite behavior can be observed right before the separation location, where the
boundary layer is thinner. In order to have a ”smarter” way of determining the interface location, an effort
is being made to implement a sensor based on the local BL thickness.

In Figure 18 the wall normal Reynolds stress component for both interface locations are compared
to Greenblatt’s data. Within the recirculation bubble (x/c = 0.8, 0.9) better agreement is obtained for
hw = 0.3δ0. As soon as the boundary layer starts reattaching, better agreement with measurements is
achieved for the interface location closer to the wall.

IV.B.2. ZDES ”Mode 3” - timestep sensitivity

The influence of the timestep size as well as the total time the solution is averaged over is examined in
this section. Three different timestep sizes are considered. Figure 19a shows the dependence of the number
of timesteps the solution is averaged over. 1 Full domain flow through time consists of approximately 8
convective time units. A slight difference can be seen in the skin friction, especially in the adverse pressure
gradient region and the recovery region leeward of the hump. This indicates that averaging over only 8 to 10
CFTs is not sufficient. We now examine the sensitivity of the results to the timestep size. For this purpose
three different simulations with timesteps of ∆t+ = 5.0, 1.0 and 0.5 have been conducted. Figure 19b and
Figure 20 depict the skin friction coefficient and the Reynolds stress component u′v′. The latter has been
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Figure 17: Effect of the RANS/LES interface hw location on the skin friction coefficient and pressure
coefficient. Two different locations at hw = 0.1δ0 and hw = 0.3δ0 are considered.
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Figure 18: Variation of Reynolds stress v′v′ along seven different x/c locations. Profiles successively shifted
by ∆v′v′ = 0.075 along the horizontal axis.
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chosen as it showed the biggest impact of timestep size on the overall results. For all timesteps full domain
flow throughs have been simulated. The smallest timestep does the best job in predicting the skin friction,
however it appears that the larger timestep does a better job in matching the u′v′ component inside of the
separation bubble. This is possibly due to a fortuitous cancellation of multiple errors, but further investiga-
tion is required. Overall good agreement was observed with all selected timestep sizes.
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Figure 19: Comparison of skin friction coefficient: (a) 1 vs 2 Full Domain Flow throughs (FDFT). 1FDFT
corresponds to around 8 convective flow throughs. (a) timestep sensitivity study with 3 different time step
sizes of ∆t+ = 0.5, 1.0 and 5.0. Data from wall resolved LES from Uzun et al. is plotted for comparison.
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Figure 20: Reynolds stress profile of the u′v′ component at seven different axial locations. Three different
timestep sizes considered ∆t+ = 5.0, 1.0, 0.5. Profiles successively shifted by ∆u′v′ = 0.075.

IV.C. Comparison of LBM-LES with ZDES Mode 3 and results from literature

This section will discuss results obtained with our Lattice Boltzmann solver in LES mode. A comparison
will be made with ZDES Mode 3 and selected results from literature. For our comparison we selected wall
resolved LES simulations on a wide-span configuration (Lz = 0.4c) from Uzun and Malik3 who used a mesh
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consisting of 420M cells with y+ < 1. We also compare our results with LBM Very Large Eddy Simulation
(LBM-VLES) of Duda and Fares.4 This approach is characterized by adding modeled turbulence in under
resolved areas, and is comparable to a hybrid RANS/LES approach. Two different configurations were used
in their study, one with periodic boundary conditions and a spanwise extent of 0.75c. A second simulation
was conducted where side walls and tunnel geometry were included to account for blockage effects. If not
explicitly stated, their results with side walls are used for comparison. A mesh size of 149.8M cells with a
maximum resolution in viscous wall units of 75 was reported.

Figure 21: Cartesian mesh with total of 5 levels of mesh refinement. Spanwise extend 0.2c with y+-value
smaller than 50 around the hump. Level 3 in regions with high vorticity. Finest level very close to the wall
turned off for visualization purpose.

The computational mesh used for our LBM simulations is depicted in Figure 21. A total of five levels of
mesh refinement with a ratio of 2:1 was used, as spatial resolution requirements significantly differ within
the domain. The finest level is used in the near wall region around the hump ranging from x/c = −0.2 to
x/c = 1.3, all other viscous walls are modeled with the second finest level. In regions of high vorticity the
third finest level is used and extended all the way to where the SEM is seeded. All the LBM-LES simulations
presented in this paper were performed using the entropic multi-relaxation time model on the D3Q27 lattice.
Periodic boundary conditions were applied in the spanwise direction. Velocity and turbulent quantities at
the inflow boundary located at x/c = −3.0 were specified based on our precursor RANS-SA simulation
which was carried out to match the experimental value of the momentum thickness based Reynolds number
Reθ = 7200. The correlation length σSEM needed for the SEM is estimated based on Bradshaw’s hypothesis
using Eqn. 2. Additional simulations have been carried out with a single value for the correlation length in
the SEM of σSEM = 0.15δ0. Only minor differences have been observed once realistic turbulent structures
were developed. Preliminary studies of this turbulent inflow condition using hybrid RANS/LES have shown
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that a development length of at least 20δ0 is required to develop fully turbulent structures. Additional
turbulent inflow conditions that recover skin friction distribution faster are currently under investigation
within the LAVA framework (e.g. Shur et al.71).

Figure 22: Iso-contour of Q-criterion coloured by normalized streamwise velocity from LBM-LES.

Due to the explicit nature of the numerical method, and the recursive algorithm outlined in Figure 3
the overall timestep is linked to the size of the cell on the finest level, with an acoustic CFL constraint.
Therefore a timestep of ∆t = 4.6 × 10−7 seconds is used and the simulation is run for a total physical time
period of 0.45 seconds which corresponds to around 33 convective time units. The first 5 convective time
units were discarded in order to wash out transients. Figure 22 shows an instantaneous snapshot of an
isosurface of Q-criterion colored by the normalized streamwise velocity to depict the vortical features and
fine scales captured by the simulation. Much finer 3D turbulent structures can be observed compared to
our previous hybrid RANS/LES simulations. This stems from the larger number of cells used, which were
required because of the isotropic nature of the cells.

Axial velocity profiles for ZDES, LBM-LES, WRLES3 and LBM-VLES4 (full span and periodic) are
plotted in Figure 23 at seven different streamwise locations. The first measurement station is just upstream
of the separation location at x/c = 0.65. The measurements at x/c = 1.1, 1.2 and 1.3 show reattachment
and recovery of the flow. Additionally, three stations within the separation bubble at x/c = 0.8, 0.9, 1.0
are depicted. Overall, excellent agreement can be observed with measurements and other simulation results
from literature. The velocity profiles near the apex of the hump are slightly overpredicted for the ZDES and
WRLES simulations and underpredicted for the LBM simulations. However it is noted that the experimental
PIV measurements at this location, where the boundary layer is very thin, are not sufficiently accurate in the
near wall region.8 Interestingly, as shown in Figure 8, RANS simulations predict the Reynolds-stresses at this
location very well, which might be a reason why LBM-VLES and ZDES perform significantly better, as both
models utilize the modeled stress components from a RANS turbulence model. Once the flow has separated,
RANS severely underpredicts Reynolds stresses in the shear layer that originates from the separation point.
This is a well-known deficiency of state-of-the-art RANS turbulence models in regions where the underlying
flow is far from equilibrium and remains an extremely active area of research.77,78

Figures 24-26 show the mean Reynolds stress comparison at the same measurements locations. The RMS
profiles in the simulations appear to be more energetic compared to experimental measurements. This is
especially prominent very close to the separation location for both of the simulations in LES mode where
no modeled stress is present. The over prediction of the Reynolds stresses further away from the wall in our
LAVA LBM-LES simulations is likely due to the consideration of blockage effects. Unfortunately no RMS
data from the periodic setup was reported by Duda and Fares.4 However, numerical experiments conducted
by Uzun and Malik8 modifying the contoured top wall seem to support our conjecture. The influence of the
spanwise extent of the simulation domain needs to be evaluated more carefully.
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Table 2 lists the separation as well as reattachment location and the corresponding bubble size for all
simulations and gives an error estimate based on Eqn. 3. Our LAVA LBM-LES and ZDES ”Mode 3” show
an improvement of approximately 90% in predicting the separation bubble size, thereby meeting NASA’s
RCA technical challenge of reducing the the predictive error by at least 40%. The DDES approach with
improved length scales used in this work16 significantly overpredicted the separation bubble size due to the
well known problem of modeled-stress depletion which delays the development of 3D turbulent structures in
the separated shear layer. Efforts to mitigate this issue by replacing the length scale definition in the model
with a shear layer adapted version of the subgrid length-scale83 is beeing investigated within LAVA.

In summary, both approaches considered (LBM-LES and ZDES Mode 3) make predictions that are in
excellent agreement with measurements and other simulations from literature. There is a significant differ-
ence in resolution requirements between the two approaches due to the underlying grid-paradigm used. The
Cartesian method requires significantly more grid points to resolve the devoloping turbulent boundary layer
on account of its isotropic nature. The use of mesh refinement and higher order boundary representation
helps to alleviate this limitation to a certain extent. Yet, for problems where resolving the boundary layer
development over the underlying geometry is essential for accurate predictions of the flow physics, Cartesian
methods are disproportionally expensive. On the other hand, for flows where the solution quality is not
dominated by the resolution of the turbulent boundary layer, the LBM method on Cartesian meshes has
demonstrated a significant performance benefit without any compromise in accuracy or robustness whatso-
ever (see Barad et al.45).

Finally, the efficiency of the two methods presented in this study is evaluated based on the number
of CPU hours required for one convective time unit. The simulations were performed on the Pleiades
cluster at NASA Ames Research Center using Intel Xeon E5-2680v4 processors. A total of 240 CPUh were
necessary for the ZDES Mode 3 approach compared to 614 CPUh using the LBM-LES method. The superior
computational efficiency of the body-fitted curvilinear method relative to the Cartesian immersed boundary
LBM (by a factor of 2.5) is due to the substantially larger timestep size of ∆t = 1.8 × 10−5 used by the
former relative to ∆t = 4.6 × 10−7 used by the latter (by a factor of 39). As reported in Duda et al.,4

comparable simulations using a hybrid RANS/LES paradigm within LBM are approximately 13% faster for
similar solution accuracy (540 CPUh per convective time unit, ∆t = 6.868× 10−7). The hybrid RANS/LES
approach has the advantage of less stringent resolution requirements.4 Therefore a hybrid RANS/LES
approach is currently under development within LAVA-LBM. We remind the reader that the conclusions
drawn here regarding the relative computational efficiency of the two approaches for comparable accuracy
is specific to the particular test case under consideration. Furthermore, in practice the decision to favor a
Cartesian approach over a body-fitted approach almost always hinges on the complexity of the underlying
geometry and the significantly larger manual effort required to generate a body-fitted mesh.

Table 2: Separation and reattachment locations and corresponding separation bubble size from different
LAVA simulations, data from literature and experiments from Greenblatt et al.1 Measurements for DDES
are taken at second reatachment location ignoring bifurcated flow region. Separation bubble size error was
calculated based on Eqn 3.

Case Separation Location Reattachment Location Bubble length Error

(x/c) (x/c) (∆x/c) (%)

Greenblatt et al. 0.665±0.005 1.10±0.005 0.435

LAVA RANS fine 2D 0.661 1.263 0.602 38.3

LAVA DDES 0.659 1.343 0.684 57.2

LAVA DDES + SEM 0.659 1.230 0.571 31.2

LAVA ZDES Mode 3 0.658 1.115 0.457 5.1

LAVA LBM-LES 0.662 1.128 0.466 7.1

Uzun et al. 0.660 1.090 0.430 -1.1

PowerFlow fine LBM-VLES 0.673 1.153 0.480 10.3
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Figure 23: Time averaged u-velocity profiles extracted at seven different locations downstream of the sepa-
ration location. WMLES data from Uzun and Malik3 and VLES-LBM data from Duda and Fares4 digitized
from referenced papers.
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Figure 24: RMS u′u′ u-velocity profiles extracted at seven different locations downstream of the separation
location. WMLES data from Uzun and Malik3 and VLES-LBM data from Duda and Fares4 digitized from
referenced papers.
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Figure 25: RMS v′v′ profiles extracted at seven different locations downstream of the separation location.
WMLES data from Uzun and Malik3 and VLES-LBM data from Duda and Fares4 digitized from referenced
papers.
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Figure 26: RMS u′v′ profiles extracted at seven different locations downstream of the separation location.
WMLES data from Uzun and Malik3 and VLES-LBM data from Duda and Fares4 digitized from referenced
papers.
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V. Summary

RANS, DDES, ZDES Mode 3 as well as LBM-LES predictions have been presented and compared to
experimental data as well as other results from literature,4,8 for NASA’s wall mounted hump test case.
Both Lattice Boltzmann using Cartesian grids and hybrid RANS/LES using structured overlapping grids
were able to achieve excellent agreement with experimental data. The effects of grid resolution were studied
for RANS simulations and the well known deficiencies of state-of-the-art turbulence models in predicting
separation and reattachment were demonstrated. RANS models generally underpredict the Reynolds stresses
in the separated shear layer, where the flow is far away from equilibrium, resulting in delayed reattachment.
The error in predicting the separation bubble size has been found to be consistent with previous RANS
simulations reported at around 38%. Similar, if not even worse behavior has been observed with SA-
DDES even when using an improved length scale.16 The insufficient production of turbulent structures
leeward of the separation location causes a delayed reattachment and thus creates an even larger separation
bubble relative to RANS. Recently, improvements aimed at enhancing the production of turbulence using
the DDES approach in conjunction with a shear layer adapted definition of the subgrid length-scale have
shown promising results.83 Those modifications to the SA-DDES model together with the Improved DDES
(IDDES) will be considered in future work. ZDES Mode 3 where RANS acts as a wall-model for the outer
LES simulation showed good agreement with velocity and Reynolds stress profiles as well as skin friction and
pressure coefficient distribution measured by Greenblatt et al.1 No delay in the development of realistic 3D
turbulence in the shear layer that originates from the separation point has been observed in the ZDES Mode
3 simulations. Sensitivity of skin friction distribution and resolved Reynolds stress profiles to the location
of the RANS/LES interface for a fixed mesh has been documented. A timestep sensitivity study for ZDES
was performed and only minor differences were found. The LBM-LES method within LAVA gave excellent
results when comparing velocity profiles and Reynolds stress profiles. Blockage effects due to side walls in
the experiment need to be investigated further. In order to lower the cell count necessary in our LBM-LES
simulation, the development of a hybrid RANS/LES model within the LBM framework is currently being
pursued.

Both the ZDES Mode 3 as well as LBM-LES simulations met the technical challenge (TC) created by
NASA’s Revolutionary Computational Aerosciences (RCA) program to reduce the predictive error of canon-
ical separated flows by 40%. An improvement of more than 90% was demonstrated using both approaches
presented in this paper. The superior computational efficiency of the body-fitted curvilinear method relative
to the Cartesian immersed boundary LBM for a given accuracy was demonstrated. Due to the isotropic
nature of the computational cells within the LBM solver and the explicit nature of time advancement, the
resolution requirements were significantly higher, thus negating the performance benefits of the latter relative
to the former. This particular problem is a well-known limitation of the Cartesian paradigm where resolving
the boundary layer development over the underlying geometry is essential for accurate prediction of the
flow physics. Despite the increased resolution requirements, Cartesian methods especially when combined
with the efficiency of Lattice Boltzmann method have the critical advantage that manual volumetric mesh
generation efforts are completely eliminated.

It is worth pointing out that the RCA technical challenge focuses on canonical configurations with minimal
geometric complexity. Nearly all geometries with a few exceptions (eg. the Common Research Model, Wing-
body-juncture) are relatively straight forward to mesh even when using a structured mesh paradigm. The
meshing efforts increase exponentially when the underlying geometry is extremely complex and can often
require hundreds of hours of manual labor. Cartesian methods on the other hand completely eliminate this
process resulting in much faster turnaround times. For this reason we consider multiple grid paradigms and
numerical methods absolutely necessary for future CFD work.9
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